The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X 1 1 1 1 1 1 X X X X 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 X X 1 X 1 X 1 1 1 1 1 1 1 1 0 2X 0 0 0 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 2X 0 2X 0 2X 2X 0 0 0 2X 0 2X 0 0 2X 0 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 2X 2X 0 0 0 2X 2X 0 2X 2X 2X 2X 0 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 0 2X 0 0 2X 2X 0 0 0 generates a code of length 60 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 59. Homogenous weight enumerator: w(x)=1x^0+28x^59+85x^60+7x^64+4x^67+2x^68+1x^76 The gray image is a code over GF(2) with n=480, k=7 and d=236. This code was found by Heurico 1.16 in 0.11 seconds.